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1
Continuity and Topologies

In the overture, we defined metric spaces associated to simplicial complexes, which
allowed us to talk about notions like continuity, as well as open and closed sets.1 In 1 For those of you who don’t recall: an open

subset U ⊂ X of a metric space (X, d) is a set
such that, for every x ∈ U , there is a radius r > 0
such that the open ball Br(x) around x is entirely
contained within U . A closed subset C ⊂ X is a
set such that the complement Cc is open.

analysis, one additionally makes use of notions like limit points, compactness, the
interior of a set, and so on.

The fundamental observation of topology is that none of these continuity-related
notions really require a metric. We can have satisfactory definitions of continuous,
compact, etc. if we forget about the metric (the distance between points) and only
remember which sets were open. This insight leads to the notion of a topology,
which allows one to think about continuous spaces in a much more general context.

1.1 Continuity

We begin our exploration of topology with the following proposition.

Proposition 1.1. Let (X, d) and (Y, s) be metric spaces. Then a function s : X →
Y is continuous if and only if, for every open subset U ⊂ Y , the subset f−1(U) ⊂ X

is open.

Proof. First suppose that s is continuous and let U ⊂ Y be an open set. Suppose
x ∈ f−1(U). Since U is open, we can find an ε > 0 such that the ball Bϵ(f(x)) ⊂ U .
By continuity, there exists a δ > 0 such that f (Bδ(x))) ⊂ Bϵ(f(x)), and thus
Bδ(x) ⊂ f−1(U), proving that f−1(U) is open.

Now suppose that every preimage under f of an open set is open. In particular,
given x ∈ X, and ε > 0, the set f−1(Bϵ(f(x))) is open. Therefore, there is a δ > 0

such that Bδ(x) ⊂ f−1(Bϵ(f(x))), and thus f(Bϵ(x)) ⊂ Bϵ(f(x)). Hence, f is
continuous.

This tells us that if we know the collection of open sets of (X, d), we can check
whether a map is continuous regardless of whether we know the metric. The idea of
a topological space is to forget the metric, and just remember the open sets:

Definition 1.2. Let X be a set. A topology on X is a subset τX ⊂ P(X) of the
power set such that

1. X, ∅ ∈ τX .
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2. Let {Ui}i∈I be a (possibly infinite) collection of sets in τX . Then⋃
i∈I

Ui ∈ τX

3. Let {Ui}ni∈1 be a finite collection of sets in τX . Then
n⋂

i=1

Ui ∈ τX .

We call the elements U ∈ τX the open sets of the topology on X. We refer to a pair
(X, τX), where τX is a topology on X, as a topological space.2 We call a subset 2 We will often abuse notation and write X for

a topological space in cases where the choice of
topology is clear from context.

C ⊂ X of a topological space closed if

Cc := X \ C

is an open set, i.e. is in τX .

Proposition 1.3. Let (X, d) be a metric space. Denote by τd the collection of
d-open subsets of X. Then τd is a topology on X.3 3 This, together with Proposition 1.1 effectively

tells us that we can study continuous functions
between metric spaces in terms of the associated
topological spaces.

Proof. It is immediate that X and ∅ are elements of τd. We now check the remain-
ing properties.

Suppose that {Ui}i∈I is a collection of open sets of X, and let x ∈
⋃

i∈I Ui.
Then, in particular, there exists a j ∈ I such that x ∈ Uj . Since Uj is open, there
is a radius r such that Br(x) ⊂ Uj . However, this implies that Br(x) ⊂

⋃
i∈I Ui, so

the latter is open.
Now suppose that {Ui}ni=1 is a collection of open sets of X. Let x ∈

⋂
Ui. For

each 1 ≤ i ≤ n, choose a radius ri > 0 such that Bri(x) ⊂ Ui. Set r = mini(ri).
Then Br(x) ⊂ Ui for any q ≤ i ≤ n. Consequently Br(x) ⊂

⋂
Ui, and such

⋂
Ui is

an open set.
Note that Proposition 1.3 implies that for any
finite simplicial complex K, the realization |K| is
canonically a topological space.

Having now established our general definitions, we can now proceed to the con-
cepts necessary to study continuous maps

Definition 1.4. A map f : X → Y between topological spaces (X, τX) and (Y, τY )

is called a continuous map if, for every open subset U ∈ τY , the preimage f−1(U)

is an element of τX . We say that f is a homeomorphism if it is bijective and both f

and f−1 are continuous.

Lemma 1.5. Let f : (X, τX) → (Y, τY ) be a map between topological spaces. The
following are equivalent:

1. The map f is continuous.

2. For every closed set C of Y , f−1(C) is closed in X.

Proof. First suppose that f is continuous, and let C ⊂ Y be closed. Then f−1(Cc)

is open in X. We can then compute

f−1(C)c = X \ f−1(C) = f−1(Y ) \ f−1(C) = f−1(Y \ C) = f−1(Cc)
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and thus, f−1(C)c is open, so f−1(C) is closed.
Now suppose that f satisfies condition 2. The same computation as above shows

that for U ∈ τY , f−1(U) is open.

Lemma 1.6. Let f : (X, τX) → (Y, τY ) be a map between topological spaces. Then
f is a homeomorphism if and only if f is continuous, bijective, and, for all U ∈ τX ,
f(U) ∈ τY .

Proof. Left as an exercise to the reader.

Definition 1.7. Let τ1 and τ2 be two topologies on a set X. If idX : (X, τ2) →
(X, τ1) is continuous, we say that τ1 is coarser than τ2 or that τ2 is finer than τ1.

Exercise 1.8. Show that the following statements are equivalent:

1. τ1 ⊂ τ2

2. τ1 is coarser than τ2.

Examples. Some interesting examples of coarse-
ness/fineness are the most extreme. Let X be a
set
1. Define a topology τdis on X by declaring every

subset of X to be an element of τdis. We call
this the discrete topology on X. This is the
finest possible topology on X, and it has a
very interesting property. Let (Y, τY ) be any
topological space, and let f : X → Y be any
map of underlying sets. Then f : (X, τdis) →
(Y, τY ) is continuous.

2. Define a topology τind on X by τind :=

{∅, X}. We call this the indiscrete topology
on X – the coarsest possible topology on X.
For any topological space (Y, τY ) and any map
of sets f : Y → X, the map f : (Y, τY ) →
(X, τind) is continuous.

These two examples are dual to one another,
in a sense that the categorical language we will
explore later makes clear.

1.1.1 Bases

We now want a way to uniquely specify a topology on X by giving a simpler collec-
tion of sets. We will introduce two such notions, one stronger than the other.

Lemma 1.9. Let X be a set and let I be a set of topologies on X. Then

γ :=
⋂
τ∈I

τ

is a topology on X.

Proof. Left as an exercise.

Definition 1.10. Let X be a set, and B ⊂ P(X) be a subset of the power set. Set

I := {τ ⊂ P(X) | B ⊂ τ and τ is a topology on X}.

We define
τB :=

⋂
τ∈I

τ

to be the topology generated by B.

Definition 1.11. Let X be a set, and let τX be a topology on X. We call a subset
B ⊂ τX a basis of τX if every element of τX is a (possibly empty) union of elements
of B.

Proposition 1.12. Let (X, τX) be a topological space, and let B ⊂ τX . Then B is
a basis for τX if and only if, for every U ∈ τX and every x ∈ U , there is a V ∈ B
such that x ∈ V and V ⊂ U .
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Proof. First suppose that B is a basis for τ . Let U ∈ τX and x ∈ U . Then, in
particular, there is a set {Vi}i∈I of elements in B such that⋃

i∈I

Vi = U

So, for at least one i ∈ I, x ∈ Vi, and every Vi ⊂ U . Therefore, our criterion is
fulfilled.

Now suppose our criterion is fulfilled. Let U ∈ τX . For each x ∈ U , let Vx ∈ B be
a set such that x ∈ Vx ⊂ U . It is then immediate from the definition that

U =
⋃
x∈U

Vx

so B is a basis for τX .

Examples.
1. Consider Rn with the standard topology τ , i.e.

the topology defined by the Euclidean metric.
Then consider the set

B := {Br(x) | x ∈ Rn and r > 0}

of open balls. It is easy to check using the
preceding proposition that B is a basis for τ .

2. More generally, let (X, d) be a metric space.
Then the set of open balls in X forms a basis
of the topology induced by d.

3. Rn actually has an even smaller basis: The set
of open balls with rational radii about points
with rational coordinates. That this is so boils
down to the statement that the rationals are
dense in the reals.

We can also make use of bases to more efficiently check when maps are continu-
ous:

Proposition 1.13. Suppose (X, τX) and (Y, τY ) are topological spaces, B is a basis
of τY , and f : X → Y is a map of sets. Then f is continuous if and only if, for
every U ∈ B f−1(U) is open.

Proof. Left as an exercise for the reader.

We conclude with a criterion for determining when a collection of sets B is a
basis for some topology:

Proposition 1.14. Let X be a set, and B ⊂ P(X). Suppose X can be written as
a union of elements of B (we say B covers X) and that, for every U, V ∈ B and
x ∈ U ∩ V , there is a set W ∈ B with W ⊂ U ∩ V such that x ∈ W . Then B is the
basis of a topology.

Proof. Left as an exercise for the reader.

1.2 Building spaces

Having established our basic definitions, we now make a brief interlude to discuss
some ways of constructing new topological spaces from old ones. We already have
quite a large class of topological spaces — those which arise as metric spaces —
however, for more general applications, we will want to construct topological spaces
directly from other topological spaces.

A schematic depiction of the open sets in the
supspace topology is as follows. In the first
drawing we have a space X, a subset Y , and an
open set U of X.

X
Y

U

In the second, we have the corresponding open
subset Y ∩ U of Y in the subspace topology

Y

U ∩ Y

Construction 1.15 (Subspace topology). Let (X, τX) be a topological space and
let Y ⊂ X be a subset. The topology τX on X induces a topology τY on Y called
the subspace topology as follows.

We define
τY := {U ∩ Y | U ∈ τX}.



topological background 7

To see that (Y, τY ) is a topological space, we first note that Y = X ∩ Y ∈ τY and
∅ = ∅ ∩ Y ∈ τY . Suppose we have a set of open sets {Vi}i∈I in τY . For each i,
choose4 a Ui ∈ τX such that Ui ∩ Y = Vi. Then U :=

⋃
i∈I Ui is in τX , and thus 4 This requires the axiom of choice.⋃

i∈I

Vi =
⋃
i∈I

Y ∩ Ui = Y ∩ U ∈ τY .

Finally, for a finite collection {Vi}ni=1 of sets in τY , we again choose5 Ui ∈ τX with 5 This doesn’t.
Ui ∩ Y = Vi, and note that

n⋂
i=1

Vi =

n⋂
i=1

(Y ∩ Ui) = Y ∩
n⋂

i=1

Ui ∈ τY .

Thus, τY is a topology on Y .

The subspace topology is, in a sense, the coarsest topology on X such that Y →
X is continuous, as the next lemma makes clear.

Lemma 1.16. Let (X, τX) be a topological space, let Y ⊂ X, and let τY denote
the subspace topology on Y . Then for any topology γ on Y such that the inclusion
ι : (Y, γ) → (X, τX) is continuous, the identity map idY : (Y, γ) → (Y, τY ) is
continuous.

Proof. Let V ∈ τY . Then there is a U ∈ τX with U ∩ Y = V . However, ι−1(U) =

Y ∩ U . Thus, since ι : (Y, γ) → (X, τX) is continuous, V ∈ γ. Therefore τX ⊂ γ.

Lemma 1.17. Let (X, τX) be a topological space, Y ⊂ X, and τY the subspace
topology on Y . Denote the inclusion ι : Y ↪→ X. Let (Z, τZ) be a topological
space, and f : Z → Y a map of sets. Then f is continuous if and only if ι ◦ f is
continuous.

Proof. Left as an exercise to the reader.

Example 1.18. Consider the unit circle S1 := {(x, y) ∈ R2 | x2 + y2 = 1} ⊂ R2.
The Euclidean metric on R2 induces a topology on R2 (called the standard topology
on R2), and we can equip S1 with the subspace topology.

Construction 1.19 (Quotient topology). Let (X, τX) be a topological space, and
∼ an equivalence relation on X. There is a canonical map of sets π : X → X/∼

from X to the quotient set. We now define the quotient topology

τ∼ :=
{
U ⊂ X/∼ | π−1(U) ∈ τX

}
.

We claim that (X/∼, τ∼) is a topological space. We leave the verification that
this is, in fact a topology to the reader

Exercise 1.20. Rigorously formulate and prove the statement that ‘τ∼ is the finest
topology on X/∼ such that π : X → X/∼ is continuous’.

Exercise 1.21. Let (X, τX) and (Y, τY ) be topological spaces, and let ∼ be an
equivalence relation on X. Suppose f : X → Y is a continuous map such that x ∼
y ⇒ f(x) = f(y). Then there is a unique continuous map f̃ : (X/∼, τ∼) → (Y, τY )

such that f̃ ◦ π = f , where π : X → X/∼ is the quotient map.
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Examples 1.22.

1. Consider [0, 1] ⊂ R equipped with the subspace topology, and define an equiva-
lence relation on [0, 1] by setting 0 ∼ 1. We then get a quotient topological space
S = [0, 1]/∼ with topology τ∼. Consider the map

f : [0, 1] → C = R2

t 7→ exp(2πit)

We know from analysis that this map is well-defined, continuous, and has image
S1 ⊂ R2. Moreover, f is a bijection onto it’s image, and one can check (using a
basis for the standard topology) that it is a homeomorphism. Therefore, (S, τ∼)
is homeomorphic to S1.

2. Let X = [0, 1] × [−1, 1] ⊂ R2, equipped with the subspace topology. Define
an equivalence relation on X by setting (0, x) ∼ (1,−x). The quotient space
(X/∼, τ∼) is called the Möbius band.6 6 The Möbius band is a rare example of a non-

orientable surface which is easy to visualize:

Indeed, one can easily construct a Möbius band
from paper or fabric.

We now come to a slightly more subtle construction. We want to define topolo-
gies on the cartesian products of topological spaces

∏
i∈I Xi. However, in the case

where the product has an infinite number of factors, care must be taken to get a
sensible definition.

Construction 1.23. Let I be a set, and {(Xi, τi)}i∈I be a collection of topological
spaces indexed by I. We define a topology on the set

X :=
∏
i∈I

Xi

as follows. Define a set

B :=

{∏
i∈I

Ui |
Ui∈τi and

Ui=X for all but a finite
number of i∈I

}

One can easily check that B satisfies the criteria from Proposition 1.14, and thus,
defines a topology τX on X. We call this topology the product topology.

Example 1.24. Let Rn and Rm be equipped with the standard topologies, and
denote the product topology on Rn+m = Rn × Rm by τn×m. Denote the standard
topology on Rn+m by γ. It is immediate from the definitions that the identity map
defines a homeomorphism (Rn+m, τn×m)

∼=→ (Rn+m, γ), so τn×m = γ.

Exercise 1.25. Formulate and prove the statement that the product topology is
the coarsest topology on

∏
i∈I Xi such that the projections

πj :
∏
i∈I

Xi → Xj

are all continuous.
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Construction 1.26 (Disjoint unions). Let {(Xi, τi)}i∈I be a collection of topologi-
cal spaces, we define a topology τ on X :=

∐
i∈I Xi called the coproduct topology or

disjoint union topology by setting

τ = {U ⊂ X | U ∩Xi ∈ τi∀i ∈ I}.

The verification that this is indeed a topology is left as an exercise to the reader.

Exercise 1.27. Formulate and prove the statement that the coproduct topology is
the finest topology on

∐
i∈I Xi such that all of the inclusions

ιj : Xj →
∐
i∈I

Xi

are continuous.

We now provide an application: realizing infinite simplicial complexes. A nice example of the product topology is the
torus. This is the product S1 × S1, equipped with
the product topology. One can also view the torus
as a subspace of R3, and the subspace topology
agrees with the product topology in this case.
When drawn, the torus is a surface which looks a
bit like a doughnut:

Construction 1.28. Define (R∞, τ∞) to be the space
∏

i∈N R with the product
topology. Suppose that K is an ordered simplicial complex with a countable set X

of vertices. We construct a topological space |K| called the geometric realization of
K as follows. The underlying set of |K| is a set of formal finite linear combinations

Λ :=
∑
x∈X

λxx

with λx ∈ R. To each such Λ, we associate a set SΛ := {x ∈ X | λx 6= 0}. We can
then define the underlying set

|K| :=

{∑
x∈X

λxx
∣∣∣ λx ≥ 0,

∑
x∈X

λx = 1, and SΛ ∈ Sim(K)

}
⊂ R|X|

Where we consider the coefficient vector (λx)x∈X as an element of R|X|. Since X is
a set with countable number of vertices, we can identify it with N. Consequently,
we can identify R|X| with Rω, and take the subspace topology on |K|.

One final example of quotient spaces.

Construction 1.29. Consider Rn+1 \ {0} with the subspace topology coming from
Rn+1. Define an equivalence relation on Rn+1 \ {0} by x ∼ λx for every λ ∈ R \ {0}.
We define the n-dimensional real projective space RPn to be the quotient space
(Rn+1 \ {0})/∼.

Note that we can also consider RPn as the quotient of the unit sphere Sn by the
equivalence relation x = −x.

Lemma 1.30. The spaces S1 and RP 1 are homeomorphic.

Proof. Let p : R2 \ {0} → RP 1 be the quotient map, and let q : [0, 1] → S1 =

[0, 1]/0∼1 be the quotient map.
We first define a map f : [0, 1] → RP 1 by x 7→ p(exp(πix)). It is clear that,

as a composite of continuous maps, f is continuous. Note that, if x ∈ (0, 1), then
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there is no y ∈ [0, 1] such that − exp(πix) = exp(πiy), so f is injective on [0, 1].
Moreover, f(0) = f(1). Consequently, f descends to an injective continuous map
f : S1 → RP 1. Since every element of RPn has a representative in the upper
half-circle, this map is surjective, and thus is a bijection.

Denote the inverse of f by f−1. The map f−1 sends an element in the upper
half-circle x ∈ C to q( ln(x)

πi ). The assignment x 7→ ln(x)
πi is a continuous assignment

from the upper half-circle to [0, 1], and therefore, f−1 is continuous.

1.3 Hausdorff Spaces

Now that we have the basic tools necessary to construct topological spaces, we can
begin exploring their properties. Of particular interest is the degree to which our
concepts and intuitions from analysis carry over to topologies.

Definition 1.31. Let (X, τX) be a topological space. An open cover of X is a
collection U := {Ui}I∈I ⊂ τX of open subsets of X such that

⋃
i∈I Ui = X. We say

that a cover V is a subcover of a cover U if V ⊂ U

Definition 1.32. Let (X, τX) be a topological space. We say that X is compact if
every cover U of X admits a finite subcover V.

Intuitively, compact sets should be thought of as playing the role of ‘closed and
sufficiently small’ in topology. However, this intuition is significantly complicated
by some pathological counterexamples. We do, however, have the following nice
property.

Lemma 1.33. Let (X, τX) be a compact topological space, and let Y ⊂ X be a
closed set. Then Y is compact.

Proof. Let U := {Ui}i∈I be an open cover of Y . Since Y is closed, the collection
V := U ∪ {X \ Y } is an open cover of X, and therefore admits a finite subcover
U1, . . . , Uk, X \ Y . Since (X \ Y ) ∩ Y = ∅, this means that U1, . . . , Uk is a finite
subcover of Y .

It is a classical theorem of analysis that, in a metric space (X, d), every compact
subset is closed and bounded. In the case of Rn with the Euclidean metric, this
can be strengthened to an ‘if and only if’ statement (the Heine-Borel Theorem).
However, in topological spaces, things become rather stranger.

Example 1.34. Let X be a set, and τX := {∅, X} be the indiscrete topology on
X. Let x ∈ X. Then {x} is clearly a compact subset of X (the only open covers are
finite), however, if X has more than one point, then {x} is not the complement of
either X or ∅, and therefore cannot be closed.

To avoid this particular pathology, we need to impose some condition on our
topological spaces to make them better match our intuition.

Example. Every metric space is Hausdorff.

Example (Non-example). Let (Y, τY ) be the
topological space R × {0, 1}, where {0, 1} is
equipped with the discrete topology. Note that
Y can also be identified with R q R. Define an
equivalence relation on Y by (x, 0) ∼ (x, 1) for all
x 6= 0. The quotient space (Y/∼, τ∼) is a standard
counterexample in topology, called the line with
two origins. Schematically, it looks like

If we label the copies of the origin 01 and 02, it is
not hard to see that every open ball Br(01) of 01
must intersect every open ball BR(02), and thus
that any open sets 01 ∈ V and 02 ∈ U with have
non-empty intersection.

Definition 1.35. A topological space (X, τX) is called a Hausdorff space (or just
Hausdorff ) if, for every two distinct points x, y ∈ X, there exist open sets x ∈ Ux

and y ∈ Uy such that Ux ∩ Uy = ∅. We say that a Hausdorff space separates points.
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Corollary 1.36. Let (X, τX) be a Hausdorff space. Then every compact subset of
X is closed.

Proof. Let Y ⊂ X be a closed subset of X. We show the equivalent statement that
X \ Y is open. Fix a point x ∈ X \ Y ; for each point y ∈ Y choose open sets
y ∈ Vy and x ∈ Uy such that Vy ∩ Uy = ∅. The collection {Vy}y∈Y is an open
cover of Y , and therefore admits a finite subcover Vy1 , . . . , Vyn . By construction
the intersection Ux :=

⋂n
i=1 Uyi

has empty intersection with
⋃n

i=1(Vyi
) and thus

has empty intersection with Y . But, as a finite intersection of open sets, Ux is an
open set, and since x ∈ Uyi for all 1 ≤ i ≤ n, x ∈ Ux. Therefore, Ux is an open
neighborhood of x in X, and Ux ⊂ X \ Y .

Construct such a Ux for every x ∈ X\. Then X \ Y =
⋃

x∈X\Y Ux is open.

Proposition 1.37. Let (X, τX) be a Hausdorff space, and Y ⊂ X a subspace. Then
Y is Hausdorff.

Proof. Left as an exercise for the reader.

Proposition 1.38. Let f : X → Y be a continuous map of topological spaces such
that X is compact. Then f(X) is compact.

Proof. Left as an exercise for the reader.

1.4 Connectedness and path-connectedness

Above, we constructed the disjoint union of topological spaces, XqY , which can be
viewed as consisting of two separate ‘parts’: X and Y . However, given a topological
space (X, τX), we do not yet have any way of testing whether it has been built in
this way. Such a criterion is provided by notions of connectedness.

Definition 1.39. Let (X, τX) be a topological space. If, for every pair of non-
empty open sets U, V ∈ τX such that U ∪V = X, the intersection U ∩V 6= ∅, we say
that X is connected. A connected component of X is a maximal connected subspace
Y ⊂ X.

Lemma 1.40. A topological space (X, τX) is connected if and only if it has a single
connected component: X.

Proof. Left as an exercise for the reader.

In a sense made precise by the following proposition, connectedness measures
‘discreteness of maps out of X’.

Proposition 1.41. Let (X, τX) be a topological space. The following are equivalent

1. (X, τX) is connected.

2. Every continuous map f : X → Y to a discrete space is constant.
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Proof. We first show 2. ⇒ 1. Suppose that (X, τX) is not connected. Then there are
two non-empty sets U, V ∈ τX with U ∪ V = X and U ∩ V = ∅. Define a map to
f : X → {0, 1} by sending every element of U to 0, and every element of V to 1.
It is immediate from the definition that f is continuous with respect to the discrete
topology on {0, 1} and non-constant.

We now show 1. ⇒ 2. Suppose that there is a continuous, non-constant map
f : X → Y , where Y is equipped with the discrete topology. In particular, choose
two distinct elements y0 and y1 in Y such that both are in the image of f . Choose
any map of sets p : Y → {0, 1} such that p(y0) = 0 and p(y1) = 1. Since this is
continuous with respect to the discrete topologies, we get a non-constant continuous
map p ◦ f : X → {0, 1}. Since this is continuous, the sets U := (p ◦ f)−1(0) and
V := (p◦f)−1(1) are open. Since p◦f is non-constant, both U and V are non-empty.
By definition U ∪ V = X and U ∩ V 6= X.

Definition 1.42. Let (X, τX) be a topological space, and let A ⊂ X. We define the
closure of A to be the subset A ⊂ X which is the intersection of all closed subsets of
X which contain A.

Lemma 1.43. Let f : X → Y be a continuous map, and let X be connected. Then
f(X) ⊂ Y is connected.

Proof. Left as an exercise for the reader.

Lemma 1.44. Let (X, τX) be a topological space, and A ⊂ X. For every element
x ∈ A and every open x ∈ U , U ∩A 6= ∅.

Proof. Left as an exercise to the reader.

Proposition 1.45. Let (X, τX) be a topological space, and A a connected subset. If
B ⊂ X such that A ⊂ B ⊂ A, then B is connected.

Proof. Suppose that there were two open sets U, V ⊂ X such that U ∪ V = B and
U ∩ V ∩ B = ∅. Since A is connected, we must then have that A ⊂ U or A ⊂ V .
WLOG, assume A ⊂ U . But then, for b ∈ B, we have that b ∈ A and V is an open
subset containing b. Therefore by lemma 1.44, V ∩A 6= ∅, and thus, V ∩ U ∩B 6= ∅,
which is a contradiction.

So if connectedness measures the discreteness of maps out of X, can we also
measure the discreteness of maps into X?

Definition 1.46. A path in a topological space (X, τX) is a continuous map p :

[0, 1] → X, where [0, 1] is equipped with the subspace topology inherited from R.
We say that p is a path from x to y if p(0) = x and p(1) = y.

We define an equivalence relation on X by x ∼ y if and only if there exists a
path in X from x to y. A path component of x is an equivalence class [x] ∈ X/∼,
viewed as a subspace [x] ⊂ X. We say that X is path connected if X/∼ is the one-
point space.

Exercise 1.47. Show that ∼ is indeed an equivalence relation on X.
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Exercise 1.48. Show that the interval [0, 1] is connected.

Proposition 1.49. Let (X, τX) be a path-connected topological space. Then X is
connected.

Proof. Suppose X is not connected. Then there exists a continous map f : X →
{0, 1} (where {0, 1} is equipped with the discrete topology) such that f is non-
constant. Let x ∈ f−1(0) and y ∈ f−1(1). A path p : [0, 1] → X from x to y would
then yield a continuous, non-constant map f ◦ p : [0, 1] → {0, 1}. Since [0, 1] is
connected, this cannot occur, and thus, X is not path connected.

A standard counterexample in topology is the
topologist’s sine curve. Let X ⊂ R2 be the
collection of all points (x, sin( 1

x
)) for x > 0,

together with the point (0, 0). This inherits a
topology from R2 (indeed, this topology is even
Hausdorff).

Lemma. The topologist’s sine curve is con-
nected.

Proof. We simply need note that the subspace
A := {(x, sin( 1

x
)) | x > 0} is path-connected, and

thus connected. Moreover A ⊂ X ⊂ A. Therefore,
by Proposition 1.45, X is connected.

Lemma. The topologist’s sine curve is not path
connected.

Proof. Suppose we have a path p : [0, 1] → X
going from (1, sin(1)) to (0, 0). Consider the
component functions px, py : [0, 1] → R. Since
px is continuous, its image is connected, and
therefore is the interval [0, 1]. But then, p is
the map t 7→ (t, sin( 1

t
)). But for every δ > 0,

there is a 0 < t < δ such that sin( 1
t
) = 1,

i.e |p(t) − (0, 0)| > 1. Therefore, p cannot be
continuous.

Warning 1.50. The converse of Proposition 1.49 is not true. There are connected
spaces which are not path-connected. We need to make additional assumptions
about our space X if we want connectedness and path-connectedness to be equiva-
lent.

Definition 1.51. We call a topological space (X, τX) locally path-connected if, for
every x ∈ X and every open U containing x, there is an open V with x ∈ V ⊂ U

such that V is path connected.

Proposition 1.52. If X is a connected, locally path-connected topological space,
then X is path-connected.

Proof. Left as an exercise for the reader.

1.5 Homeomorphism, homotopy, and a first look at the fun-
damental group

As we saw with RP 1 and S1, it is often not too hard to explicitly write down a
homeomorphism between two spaces. However, to be able to make meaningful
statements about topological spaces, it is necessary for us to be able to say when
two spaces are not the same (i.e. homeomorphic). At first blush this may seem
easy. After all, it should be obvious that two spaces are different. Once one starts
looking at an example, however, it is not at all clear how one should go about dis-
tinguishing two spaces.

As an example, consider R2, equipped with the topology induced by the Eu-
clidean metric. and R2 \ {0}, equipped with the subspace topology. By inspection,
it should be fairly intuitive that these are not homeomorphic spaces, but how do we
prove it? The two underlying sets have the same cardinality, and it’s not possible
to write down every possible continuous map between R2 and R2 \ {0}. So we seem
to be stuck.

Paradoxically, the answer comes by considering an even weaker notion of equiv-
alence: homotopy equivalence. In loose, intuitive terms, two spaces are homotopy
equivalent if one can be ‘stretched’ or ‘shrunk’ into another.

Definition 1.53. Let X and Y be topological spaces, and f, g : X → Y continuous
maps. A homotopy from f to g is a continuous map h : [0, 1]×X → Y (where [0, 1]
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is equipped with the subspace topology inherited from the Euclidean topology on
R) such that h(0,−) : X → Y is the map f and h(1,−) : X → Y is the map g. If
there is a homotopy from f to g, we say that f and g are homotopic.

A heuristic depiction of homotopy equivalence
might be the following. We consider the space:

This sort of looks like the circle, but they are
not homeomorphic. If we remove one of the
intersections of the line and the circle, then we
get a space with three different path components,
but if we remove any single point from the circle,
we get a space with only one path component.
However, If we are allowed to shrink without
tearing our space, we can shrink it to

and then to

yielding the circle. The aim of this section will
be to prove rigorous results about this kind of a
process.

Example 1.54. The image below shows a homotopy h : [0, 1]× [0, 1] → R2 between
paths [0, 1] → R2.

h(0,−)
h( 12 ,−)

h(1,−)

The idea is that we continuously morph one path into another.

Lemma 1.55. Let [a, b] ⊂ R be an interval equipped with the subspace topology,
and let f, g : X → Y be continuous maps of topological spaces. The following are
equivalent:

1. There is a homotopy h from f to g.

2. There is a map H : [a, b]×X → Y such that H(a,−) = f and H(b,−) = g.

Proof. It is immediate that 1. ⇒ 2. Suppose that 2. holds, and we have such a map
H. Define a map

q : [0, 1]×X → [a, b]×X; (t, x) 7→ (ρ(t), x)

where
ρ(t) := a+ t(b− a)

It is easy to verify that q is continuous, and therefore H ◦ q : [0, 1] × X → Y

is a continous map. However, by definition (H ◦ q)(0,−) = H(a,−) = f and
(H ◦ q)(1,−) = H(b,−) = g. Thus H ◦ q is a homotopy from f to g.

Lemma 1.56. Denote by C0(X,Y ) the set of continuous maps between two topo-
logical spaces X and Y . Then the relation

f ∼ g ⇔ f is homotopic to g

is an equivalence relation.

Proof. First, we show reflexivity. Let f : X → Y be a continuous map. Since the
projection p2 : [0, 1] × X → X is continuous, the composite f ◦ p2 is as well, and
provides a homotopy from f to f .7 7 This is sometimes referred to as the constant

homotopy.Second, we show symmetry. Let h : [0, 1] × X → Y be a homotopy. Define
p : [0, 1] → [0, 1] to send t 7→ 1 − t. This is a homeomorphism (as one can easily
verify), and exchanges 0 and 1. Therefore the map h̃ : [0, 1] × X → Y given by
h̃(t, x) = h(p(t), x) is a homotopy from g to f .
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Finally, supose that h is a homotopy from f to g, and k is a homotopy from g to
`. We define a map

k ∗ h : [0, 2]×X → Y

via

(k ∗ h)(t, x) =

h(t, x) 0 ≤ t ≤ 1

k(t− 1, x) 1 ≤ t ≤ 2

It is straightforward to verify that this is well-defined and continuous, and there-
fore, by Lemma 1.55, f is homotopic to `.

This now allows us to define our notion of homotopy equivalence:

Definition 1.57. Two continous maps f : X → Y and g : Y → X are said to be
homotopy inverses if g ◦ f ∼ idX and f ◦ g ∼ idY . In this situation, we call f (or g)
a homotopy equivalence, and say that X and Y are homotopy equivalent.

Remark 1.58. It is immediate from the definitions that every homeomorphism is a
homotopy equivalence.

Example 1.59. Consider X := R2 \ {0} and S1, both with the subspace topology
inherited from R2. There is a canonical inclusion ι : S1 → X. We now claim that ι

is a homotopy equivalence. Define a map

r : X → S1; x 7→ x

|x|

Since x 6= 0, this is well-defined, and it is easy to check that it is continuous. We
note that r ◦ ι : S1 → S1 is equal to the identity on S1.

In the other direction, we wish to define a homotopy between ι ◦ r and idX .
Define a continuous map

H : [0, 1]×X → X; (t, x) 7→ x

|x|t

Note H(0, x) = x
|x|0 = x, so H(0,−) = idX , and that H(1, x) = x

|x|1 = x
|x| =

(ι◦r)(x). Thus, H is a homotopy from idX to ι◦R, and ι is a homotopy equivalence.

Examples 1.60. The following examples are quite straightforward, and you should
attempt to verify for yourself that they hold:

1. Rn is homotopy equivalent to the one-point topological space ∗.

2. The Möbius band is homotopy equivalent to S1.

Definition 1.61. If, as in Example 1.60 (1), a space X is homotopy equivalent to
the one-point topological space ∗, we will call X contractible.

Lemma 1.62. Let h : [0, 1]×X → Y be a homotopy from f to g, and let p : Y → Z

be a continuous map. Then p ◦ h is a homotopy from p ◦ f to p ◦ g.

Proof. Immediate from the definitions.
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So, how can we use homotopies and homotopy equivalences to show that R2 \
{0} is not homeomorphic to R2? The answer lies in a speciallized invariant: the
fundamental group. A loop in X is pretty easy to visualize, since it

matches our intuition precisely. Let’s consider the
example of the torus S1 × S1. We can define a
loop in S1 × S1 by

[0, 1] S1 × S1

t (e2πit, e2πit)

If we draw this, we get something like:

Where the path is drawn in red, and the base-
point is represented by a red dot.

Definition 1.63. We call a continuous map f : [a, b] → X a loop in X with
basepoint x ∈ X if f(a) = f(b) = x. Denote the set of loops in X with basepoint x

by L(X,x).
We say that two loops f, g : [a, b] → X with basepoint x are based-homotopic if

there is a homotopy h : [0, 1]× [a, b] → X from f to g such that h(s, a) = h(s, b) = x

for all s ∈ [0, 1].
We say that two loops f : [a, b] → X and g : [c, d] → X are equivalent if there

is a homeomorphism p : [a, b] → [c, d] with p(a) = c and p(b) = d such that f is
based-homotopic to g ◦ p. We write f ' g is f and g are equivalent loops.

Exercise 1.64. Show that equivalence of loops is an equivalence relation.

Definition 1.65. Let X be a topological space, and x ∈ X a basepoint. We
define a subset L1(X,x) ⊂ L(X,x), consisting of those loops in X with basepoint x

which are defined on the unit interval [0, 1]. We call such loops unit loops in X with
basepoint x. We will write f ∼ g if the unit loops f and g are based-homotopic.

Proposition 1.66. For any topological space X with basepoint x, the inclusion
L1(X,x) ↪→ L(X,x) induces a bijection

L(X,x)/≃ ∼= L1(X,x)/∼.

Before we can prove this result, we need the following lemma.

Lemma 1.67. Let f : [0, 1] → [0, 1] be a homeomorphism preserving 0 and 1. Then
there is a homotopy h from f to idx such that h(t, 0) = 0 and h(t, 1) = 1 for all
t ∈ [0, 1]

Proof. We define a continuous map

h : [0, 1]× [0, 1] → [0, 1], (s, t) 7→ sf(t) + (1− s)g(t).

This is well defined since, for all (s, t) ∈ [0, 1]2, we have

sf(t) + (1− s)g(t) ≥ 0 · 0 + 0 · 0 = 0

and
sf(t) + (1− s)g(t) ≤ 1 · 1 + 1 · 1 = 1.

It is immediate from the definitions that h(0,−) = g and h(1,−) = f . Moreover,

h(s, 0) = sf(0) + (1− s)g(0) = 0 + 0 = 0

and
h(s, 1) = sf(0) + (1− s)g(0) = s+ (1− s) = 1

proving the lemma.
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Proof of Proposition 1.66. The proof of Lemma 1.55 can be used to show that
every loop in X with basepoint x is equivalent to a unit loop in X with basepoint
x. Therefore, it suffices to show that two unit loops are homotopic if and only if
they are equivalent. By definition, if f ∼ g is a homotopy, then f ' g, so it suffices
to show that any two equivalent unit loops are homotopic.

Suppose f ' g. By definition this means that there is a homeomorphism p :

[0, 1] → [0, 1] which preserves 0 and 1, such that f ◦ p ∼ g. However, by Lemma
1.67, we have a homotopy h from id[0,1] to p which respects endpoints. Composing
h with f thus yields a based homotopy f = f ◦ id[0,1] to f ◦ p. Thus, there is a based
homotopy between f and g.

We can define additional structure on L1(X,x)/∼. In fact, by tracing through
loops one after another, we can define a group structure on L1(X,x)/∼: The concatenation of paths is straightforward,

but can be a bit tricky to draw. Lets visualize
two paths in the torus S1 × S1. The first we call
α:

and the second, β:

The concatenation β ∗ α is a path that looks like

where we first trace through α, and then β.

Construction 1.68. Given two loops α : [a, b] → X and β : [c, d] → X with
basepoint x ∈ X, we define the concatenation of α and β to be the based path

β ∗ α : [a, b+ (d− c)] → X

given by

(β ∗ α)(t) =

α(t) t ∈ [a, b]

β(t− b+ c) t ∈ [b, b+ (d− c)]

Exercise 1.69. Show that α ∗ β yields a well-defined map on equivalence classes

L(X,x)/≃ × L(X,x)/≃ → L(X,x)/≃.

Given two unit loops α and β in X, find a unit loop representing the equivalence
class of β ∗ α.

Proposition 1.70. The binary operation

∗ : L(X,x)/≃ × L(X,x)/≃ → L(X,x)/≃

defines a group structure on L(X,x)/≃.

Proof. It is immediate from the definitions that ∗ is associative, so we need only
define a unit element and inverses.

Let ex : [0, 1] → X be the constant loop at the basepoint x, i.e. ex(t) = x

for all t ∈ [0, 1]. Let α : [a, b] → X be a loop with basepoint x. We claim that
ex ∗ α : [a, b+ 1] → X is equivalent to α.

Define a endpoint-preserving homeomorphism p : [a, b+ 1] → [a, b] via

p(t) =
b− a

b+ 1− a
t+

a

b+ 1− a
.

And a continuous map q : [a, b+ 1] → [a, b] via

q(t) =

t t ∈ [a, b]

b t ∈ [b, b+ 1]
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Note that α ◦ q = ex ∗ α. The construction of Lemma 1.67 can be used to define
an endpoint-preserving homotopy q ∼ p, which then gives rise to a based homotopy
α ◦ q ∼ α ◦ p. This shows α ' ex ∗ α, so ex is a left unit for ∗. The proof that ex is a
left unit is totally analogous.

We now need only show that every path α has an inverse up to homotopy. Since
every equivalence class can be represented by a unit loop, we may assume without
loss of generality that α : [0, 1] → X is a based unit loop. Define p : [0, 1] → [0, 1] by
p(t) = 1− t, and set α−1 = α ◦ p. We define a based homotopy h : [0, 1]× [0, 2] → X

from α ∗ α−1 to the constant loop e2x : [0, 2] → X as follows:

h(s, t) =

(α ∗ α−1)(t− st) 0 ≤ t ≤ 1

(α ∗ α−1)((2− t)s+ t) 1 ≤ t ≤ 2

We leave it to the reader to verify that this provides the desired homotopy, and to
check the analogous case of α−1 ∗ α.

Proposition 1.71. Let f : X → Y be a continuous map of topological spaces such
that f(x) = y. Then composing with f defines a group homomorphism

f∗ : L(X,x)/≃ → L(Y, y)/≃

Proof. There are two things to check: First, that composition defines a well-defined
map on equivalence classes, and second, that this map preserves the group struc-
ture.

The map in question sends a loop ` : [a, b] → X based at x to the loop f ◦ ` :

[a, b] → X. Since reparameterization by a homeomorphism operates on the interval
[a, b], it will suffice to show that this map sends based homotopy class to based
homotopy classes. This follows (with some extra care paid to the basepoint) from
Lemma 1.62.

To see that the map preserves the group structure, we first note that f ◦ ex is
clearly ey. For two loops β : [a, b] → X and α : [c, d] → X based at x, we have

f ◦ (β ∗ α)(t) =

f ◦ α(t) t ∈ [a, b]

f ◦ β(t− b+ c) t ∈ [b, b+ (d− c)]
= ((f ◦ β) ∗ (f ◦ α))(t)

completing the proof.

Remark 1.72. Note that, while we have worked with L(X,x) the propositions
above hold true for L1(X,x) via the canonical isomorphism L1(X,x)/∼ ∼= L(X,x)/≃.

Definition 1.73. The set L(X,x)/≃ together with the group structure constructed
above is denoted by π1(X,x), and is called the fundamental group of X at x.

We will now sketch how the fundamental group can be used to distinguish
spaces. We will not prove our claims here, deferring them to later chapters. In-
stead, we will try to give the idea of how the fundamental group might be used.
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Claim 1.74. Suppose that f : X → Y is a homotopy equivalence with f(x) = y

then f∗ : π1(X,x) → π1(Y, y) is an isomorphism of groups.

Claim 1.75. For x, x′ ∈ X in the same path component, there is an isomorphism
π1(X,x) ∼= π1(X,x′).

This tells us something very important, namely that if two spaces have different
fundamental groups, they cannot be homotopy equivalent, and thus cannot be
homeomorphic. We now have almost everything we need to distinguish R2 and
R2 \ {0}.

Claim 1.76. We have
π1(R2, 1) = {e}

and
π1(R2 \ {0, }, 1) = π1(S

1, 1) = Z

Consequently, R2 and R2 \ {0} cannot be homeomorphic.

Remark 1.77. In general, if a space X is contractible (i.e. homotopy equivalent
to the one-point space), then X is path-connected, and so Claim 1.74 implies that
π1(X,x) ∼= π1(∗, ∗) ∼= {e} is a trivial group for any basepoint x ∈ X.
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