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Abstract. In this article we explain and motivate the 2-Segal conditions, focusing on the
underlying intuition. We first discuss higher associativity, and show how contemplating the
associativity of partially- and multiply-defined multiplications or compositions leads natu-
rally to the 2-Segal conditions. We then explain how these conditions may be reinterpreted
geometrically in terms of a kind of state sum. We make both of these perspectives precise,
and indicate some of the many directions in which they may be generalized. Throughout, we
attempt to emphasize the elementary nature of these intuitions, focusing on simplicial sets,
1-categories, and pictorial and diagrammatic arguments wherever possible.

1. Background, or what to expect from this paper

What we here term the 2-Segal conditions were, in fact, independently arrived at by two
different groups: by Dyckerhoff and Kapranov in [8] using the name “2-Segal spaces”; and by
Galvez-Carrillo, Kock, and Tonks in [10] under the name “decomposition spaces”. As indicated
by the choice of terminology, this article is primarily focused on the perspectives which arise
in the first of these sources, leaving discussions of the second to papers later in this volume
(in particular, [15] will focus on exploring the perspective of [10]).

In their greatest generality, the 2-Segal conditions pertain to simplicial objects

X : ∆op C

with values in an ∞-category C. However, the technicalities necessitated by this (and by the
closely-related model-categorical perspective) tend to greatly obscure the intuitions involved.
As such, we will focus exclusively on the case in which C is a 1-category. Indeed, throughout
this article, we will limit ourselves to simplicial sets.

In very broad strokes, there are two directions one can take to understand the 2-Segal
conditions. On the one hand, the 2-Segal conditions can be arrived at by taking the spines —
1-dimensional simplicial subsets of ∆n — which give rise to the Segal conditions, and replacing
them with 2-dimensional simplicial subsets corresponding to triangulations of polygons. On
the other hand, the 2-Segal conditions can be arrived at as the minimal set of conditions
necessary to require the associativity of a not-necessarily-well-defined operation. We will refer
to the former intuition as the geometric perspective and the latter as the algebraic perspective.

These two perspectives are closely linked. The algebraic perspective focuses on associativ-
ity, which, in turn, can be viewed as the requirement that all n-ary composites of a binary
multiplication corresponding to rooted binary trees are equal. However, rooted binary trees
are precisely dual to triangulations of polygons with ordered vertex sets, allowing for an easy
graphical connection between these two conditions.
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In this article, we begin with an intuitive exploration of the algebraic perspective, and
situate the associativity guaranteed by the 2-Segal conditions in the context of nerves of
categories. This leads to the interpretation of the 2-Segal conditions as a relaxation of the
1-Segal conditions which forgets that composition operation in the nerve of a category must
be a map of sets, but remembers that it must be associative. From there we explore the
geometric perspective, explaining the connection between associativity, trees, and polygonal
subdivisions.

The last two sections are devoted to making these perspectives rigorous. In section 4, we
define membrane sets and rigorously formulate the geometric version of the 2-Segal conditions.
We then show that it is equivalent to the original definition given in section 2. After a
brief digression on the coskeletalness of 2-Segal simplicial sets, we then turn to the algebraic
perspective in section 5. There, we prove that 2-Segal objects are equivalent to a particular
coherently associative structure — algebras in the bicategory of spans of sets.

While this article is intended to act as a gentle introduction to the 2-Segal conditions,
assuming some technical background is inevitable. In particular, the entire article will assume
some familiarity with basic 1-category theory, the simplex category ∆, and the basics of
simplicial sets. This is the only technical background truly required to read §2, §3, and §4.
Occasional remarks and footnotes may point to higher categorical intuitions or the associated
literature, but these can be safely ignored should the reader so wish. The one exception to this
principle is section 4.1, which requires some knowledge of truncation and coskeleton functors.
Textbook treatments of the coskeleton can be found in [13, §VII.1], [24, Section 0AMA], and
[20, Tag 051Z].

The final section, §5, amounts a recapitulation, in a drastically simplified setting, of one
of the main results of [25]. While it is, in principle, possible to read §5 without knowledge
beyond what is listed above, the meanings of all of the constructions and definitions in the
section will be somewhat opaque to a reader without some understanding of 2-categories and
bicategories.

2. The algebraic perspective: (higher) associativity

The first perspective which will lead us to the 2-Segal conditions is the study of associativ-
ity. In particular, the consideration of operations which are not well-defined functions (i.e.,
which may be partially defined, multiply defined, or both) will lead inexorably to the 2-Segal
conditions as an avatar of associativity. Before reaching for this high level of generality, how-
ever, let us take a step back, and look at associativity in a more familiar context: that of the
composition in a category.

Given a category C, we may define its nerve to be the simplicial set

N(C) : ∆op Set

which sends the ordinal [n] to the set HomCat([n],C). Conventionally, we picture the first few
sets in the nerve of a category as follows

https://stacks.math.columbia.edu/tag/0AMA
https://kerodon.net/tag/051Z
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In this section, we will attempt to untangle the reasons for which the nerve of a category comes
equipped with an associative operation.

However, any contemplation of why the nerve of a category comes equipped with a associa-
tive composition must first address the question of why the nerve of a category comes equipped
with any kind of composition at all. The starting point in our answer to this question is the
well-known Nerve Theorem.1

Theorem 2.1. The nerve functor

N : Cat Set∆

is fully faithful. A simplicial set X is isomorphic to the nerve of a category if and only if, for
every n ≥ 2, the map

Xn X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
×n

which sends a simplex to its spine are bijections.

A variant of this theorem first appeared in [14, Prop. 4.1], as part of Grothendieck’s studies
in descent theory. We will henceforth follow the convention that we call the maps

Xn X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
×n

the 1-Segal2 maps and the condition that the 1-Segal maps be bijections as the 1-Segal condi-
tions. We will call a simplicial set which satisfy the 1-Segal conditions a Segal simplicial set.
The reason for this naming convention is the use, by Graeme Segal, of the conditions which
now bear his name in [23].

To understand the 1-Segal conditions, we must first specify what the 1-Segal maps are, and
unpack what their relation to the defining features of categories are. Let us start by describing

1Not to be confused with another celebrated theorem called the Nerve Theorem, which relates to the
realization of Čech nerves of open covers. For a version of that nerve theorem, see, e.g., [23, Proposition 4.1].

2We amend the convention that these be called simply the Segal maps because we will, by necessity, need
to discuss 2-Segal maps later in this work.
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the spine of a standard n-simplex. We define a 1-dimensional simplicial subset Sp(∆n) ⊂ ∆n

to consist of those simplices [k] → [n] which factor through one of the subsets {i, i+ 1} ⊂ [n]
for 0 ≤ i ≤ n− 1. More intuitively, this simplicial set consists of precisely n 1-simplices, glued
end to end, i.e.

Sp(∆n) ∼= ∆1
∐
∆0

· · ·
∐
∆0

∆1.

To make more explicit the inclusion of the spine into ∆n, we can write

Sp(∆n) ∼= ∆{0,1}
∐
∆{1}

· · ·
∐

∆{n−1}

∆{n−1,n}.

implicitly identifying the symbol ∆I , where I is an ordinal isomorphic to [m], with ∆m. This
notational convention will be of great use to us later.

The spines of the 2- and 3-simplices can be easily pictured.

The 1-Segal maps are then given by restricting a simplex σ ∈ Xn to its spine. More formally,
they are the maps

Xn
∼= HomSet∆(∆

n, X) HomSet∆(∆
n, X) X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸

×n

.∼=

For instance, on a 3-simplex in NC, the 1-Segal map acts as

x0

x1

x2

x3f01

f02

f23

f12

f13

x0

x1

x2

x3f01

f23

f12

To understand the nerve theorem, we must unpack how a category arises from a 1-Segal
simplicial set X. We can easily see that to identify X with the nerve of a category C, we
must define the sets of objects and morphisms in C to be Ob(C) = X0 and Mor(C) = X1,
respectively. Similarly, the source and target maps from Mor(C) to Ob(C) must be identified
with d1 and d0, respectively, and the identity morphism on an object x ∈ X0 must be given
by s0(x). However, two important questions remain.

Firstly: How does composition arise from the 1-Segal conditions? Given two “morphisms”
f, g ∈ X1, they are composable precisely when the source of f matches the target of g, i.e.,
when d1(f) = d0(g). Thus, precisely when they define an element (g, f) ∈ X1 ×X0 X1. We
then obtain a span of sets

X1 ×X0 X1 X2 X1.
(d2,d0) d1
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The 1-Segal conditions require that the leftward arrow is a bijection, and so, inverting it, we
get a well-defined composition map

X1 ×X0 X1 X2 X1.
(d2,d0)

∼=
d1

We can also interpret the span which defines the composition pictorially:

x0 x2

x1

f01 f12

f02
x0 x2

x1

f01 f12 x0 x2
f02

X2X1 ×X0 X1 X1

(d2, d0) d1

More informally, we complete a pair of composable morphisms (the spine of a 2-simplex) to a
unique 2-simplex, and then forget everything about that 2-simplex except the unique maximal
edge.

More generally, the 1-Segal conditions provide n-fold composition maps3

X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
×n

X1

defined by completing a spine to the corresponding n-simplex, and then forgetting everything
except the maximal edge. In dimension 3, this looks like

x0

x1

x2

x3f01

f02

f23

f12

f13

x0

x1

x2

x3f01

f23

f12

x0

x3
f03

Now that we understand how composition maps arise from the 1-Segal conditions, let us
try to untangle associativity. The simplest expression of the associativity condition is that,
writing κ for the composition map

κ : X1 ×X0 X1 X1,

we require

(1) κ ◦ (κ×X0 id) = κ ◦ (id×X0κ).

Since each copy of κ is defined by a span of sets, let’s draw what happens in the composition
κ ◦ (κ×X0 id).

3In homotopical algebra and higher category theory, these higher compositions allow 1-Segal spaces to
encode (∞, 1)-categories and A∞-algebras. This perspective will reappear later on in the present work, as the
2-Segal conditions relate to coherent associativity, even in the Set-valued setting.
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X1 ×X0 X1 ×X0 X1 X1 ×X0 X1 X1

X2 ×X0 X1 X2

∼= ∼=

x0

x1

x2

x3f01

f02

f23

f12

x0
x2

x3

f02

f23

f03

x0

x1

x2

x3f01

f23

f12

x0
x2

x3

f02

f23 x0

x3
f03

As we examine this picture, we might notice something interesting: we could skip the
middle "forgetting" step. Instead, we could first complete the 2-simplex x0 → x1 → x2, then
complete the 2-simplex x0 → x2 → x3, and then forget anything except the maximal edge.
Categorically, we can interpret this by replacing the pair of spans above with a single span
given by the pullback of the three sets in the middle of the diagram. That is,

X1 ×X0 X1 ×X0 X1 X1 ×X0 X1 X1

X2 ×X0 X1 X2

X2 ×X1 X2

∼= ∼=

∼=

x0

x1

x2

x3f01

f02

f23

f12f03

x0

x1

x2

x3f01

f23

f12

x0

x3
f03
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Repeating this procedure for the composite κ◦(id×X0κ), we obtain two spans, representing
the two composites in our associativity conditions. These are

x0

x1

x2

x3f01

f02

f23

f12f03

x0

x1

x2

x3f01

f23

f12

x0

x3
f03

X d1
2 ×d2

X1
X2X1 ×X0 X1 ×X0 X1 X1

∼=

for κ ◦ (κ×X0 id), and

x0

x1

x2

x3f01

f23

f12f03

f13

x0

x1

x2

x3f01

f23

f12

x0

x3
f03

X d1
2 ×d0

X1
X2X1 ×X0 X1 ×X0 X1 X1

∼=

for κ ◦ (id×X0κ).
So why do the 1-Segal conditions guarantee that the maps defined by these spans equal?

Simply put, the roofs of the two spans we have computed are isomorphic, in a way compatible
with the maps defining the spans. That is, each of the “tacos”4 pictured above can be uniquely
completed to a full 3-simplex of X.

More precisely, each of these spans is isomorphic to the span defining the 3-fold composition,
and the diagram

X d1
2 ×d2

X1
X2

X d1
2 ×d0

X1
X2

X3X1 ×X0 X1 ×X0 X1 X1

∼=

∼=

∼=

commutes. Thus, this associativity diagram is equivalent to requiring that both legs of the
span

X d1
2 ×d2

X1
X2 X3 X d1

2 ×d0
X1
X2

4A wonderfully evocative term introduced by Contreras, Keller, and Mehta in [3].
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are isomorphisms. Equivalently, this amounts to requiring that the squares

(2)
X3 X2

X2 X1

d3

d1 d1

d2

and
X3 X2

X2 X1

d0

d2 d1

d0

are pullback squares.
We now, after a half-dozen pages of exploration, are ready to give a slogan explaining what

we want the 2-Segal conditions to be.

Slogan: A 2-Segal set X : ∆op → Set is a set X1 equipped with a composition operation
which may not be well-defined5, but is associative.

We thus remove the 1-Segal condition entirely, and define our n-fold compositions to be the
spans

X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
×n

Xn X1.

We then require that the two squares of (2) are pullback.
However, this is not quite sufficient, for a rather subtle reason. If we write κn for the n-fold

composition operation, then combining the 1-Segal conditions with the pullback squares of (2)
implies that the relations

(3) κm ◦ (id×κn × id) ∼= κn+m−1.

should hold no matter which input of the m-fold composition we plug the n-fold composition
into.6

If we forget the 1-Segal conditions, however, the pullback squares (2) no longer suffice to
prove these additional associativity conditions. We must, therefore, impose explicit associa-
tivity conditions for each such equation (3).

If we unwind the conditions exactly as we did above, each equation (3) yields a square

Xn+m−1 Xn

Xm X1

which we must require to be pullback. We thus obtain the full 2-Segal conditions.

5By this, we mean that the composition may be partially-defined, multiply-defined, or both. That is, the
composition is a span.

6Notice that, replacing equalities with (2-)isomorphisms, these are are the conditions defining the data of
an A∞-algebra.
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Definition 2.2. A simplicial set X : ∆op Set is called 2-Segal if, for every square
n ≥ 1 and every 0 ≤ i < j ≤ n, the square of ordered sets

{i, j} {i, i+ 1, . . . , j − 1, j}

{0, 1, . . . , i, j, j + 1, . . . , n} [n]

(when interpreted as a square in ∆) is sent by X to a pullback square. Equivalently, X is
2-Segal if for any n,m ≥ 1, and and 0 ≤ i < n, the squares

Xn+m−1 Xn

Xm X1

{i,i+1}

{0,m}

are pullback.7
These pullback conditions are collectively referred to as the 2-Segal conditions.

Remark 2.3. There are many sets of pullback conditions which are equivalent to the 2-Segal
conditions (we will see at least one other when we discuss the geometric interpretation). The
formulation of decomposition spaces in [10] is another way of describing the same conditions.

Remark 2.4. As with the 1-Segal conditions, the 2-Segal conditions make sense in a much
broader context than that of simplicial sets. Indeed, one can easily impose the 2-Segal con-
ditions on any simplicial object X in a category C with pullbacks. More generally, if C is an
∞-category, one can require that the squares in question be ∞-categorical pullback squares.
Since, as we are in the process of showing, 2-Segal objects are intimately connected to asso-
ciativity in higher algebra, it is these ∞-categorical versions which are often of the greatest
use.

Since the 2-Segal conditions are meant to encode unitality, and we arrived at them by
contemplating the associativity of composition in the nerves of categories, we might expect that
standard associative composition laws also give rise to 2-Segal simplicial sets. It is precisely
this that the next condition makes precise.

Theorem 2.5 ([8], 2.3.3 and 2.5.3). If X : ∆op Set is 1-Segal, then it is 2-Segal.

7This second description does not actually uniquely specify the squares in question as stated. One must,
additionally, require that the underlying maps in ∆ are injective.
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Proof. Suppose that X is 1-Segal, let n ≥ 2, and 0 ≤ i < j ≤ n. We can use the spine map to
extend the associated 2-Segal square to a diagram

Xn X{i,...,j}

X{0,...,i,j,...,n} X{i,j}

X{0,1} ×X{1} · · · ×X{n−1} X{n−1,n} X1

∼= id

The lower square is pullback, since two of its parallel legs are isomorphisms, and thus we can
identify the map from Xn to pullback of the upper square with the map

Xn X{0,1} ×X{1} · · ·X{i−1,i} ×X{i} X{i,...,j} ×X{j} · · · ×X{n−1} X{n−1,n}

Composing with the spine isomorphism

X{i,...,j} X{i,i+1} ×X{i+1} · · · ×X{j−1} X{j−1,j}

yields precisely the spine map for Xn. Thus, by the 2-out-of-3 property, the map from Xn to
the pullback is an isomorphism, proving the proposition. □

2.1. Addendum: unitality. Having now understood how associativity leads us naturally
to the 2-Segal conditions, it is natural to ask whether there are similar conditions governing
associativity. It turns out that there are. Indeed, the resulting conditions are called the
unitality conditions in [8]. However, as we will see, the story behind unitality becomes a bit
stranger.

First, let us unwind the meaning of unitality in our framework. Within the rubric of our
“categories with multiply- and/or partially-defined composition,” let’s require a fairly strict
definition. For x ∈ X0, the element8 s0(x) should be the left unit in the sense that, for any
f ∈ X1 with d0(f) = x, the composition f ◦ s0(x) should have precisely one value, f . We can
interpret this diagrammatically, as we did with the first associativity condition.

The requirement of strict (left) unitality can be expressed by writing that κ2 ◦ (id×s0) =
idX1 . Expressing the left-hand side of this equation as a pair of spans, we obtain

X0 ×X0 X1 X1 ×X0 X1 X1

X0 ×X0 X1 X2

∼=
s
0 ×

id (d2
, d0

)

8One might reasonably object at this point that there is no reason that the unit map X0 X1 should
not also be multiply and/or partially defined like our multiplications. While this is reasonable, we will set it
aside until we reinterpret the 2-Segal conditions in terms of algebras.
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The condition then requires that, reformulating this as a single span by the use of a pullback,
the result must be isomorphic to the identity span

X1 X1 X1.
id id

The right unitality conditions can be analyzed similarly, and we arrive at the conclusion
that unitality amounts to the squares

X1 X2

X0 X1

s0

d1 d2

s0

and
X1 X2

X0 X1

s1

d0 d0

s0

being pullback.
As we did with associativity, we must also include the considerations of unitality for the

n-fold compositions. This yields the following conditions.

Definition 2.6. A 2-Segal simplicial set X : ∆op Set is called unital if, for every
n ≥ 2 and every 0 ≤ i < n, it sends the square

[n− 1] [n]

{i} {i, i+ 1}

si

to a pullback square.

Surprisingly, though, it turns out that this condition is redundant. That is, the 2-Segal con-
ditions which guarantee unitality also guarantee associativity! This is less strange than it first
appears, because the degeneracy maps in a simplicial set already encode a lot of information
pertaining to units. Indeed, If one traces carefully through our work on associativity above,
we will see that the associativity makes no use of any degeneracy maps.

As a result, we can think of a partially-/multiply-defined multiplication which is associative,
but not unital, as a 2-Segal semi-simplicial set. That is, a functor

X : ∆op
inj Set

satisfying the 2-Segal pullback conditions, where ∆inj denotes the wide subcategory of ∆ which
contains only the injective maps.

The remarkable result, however, is that imposing unitality consists only of extending to a
simplicial structure, and does not require new conditions.

Theorem 2.7 ([9]). If X : ∆op Set is 2-Segal, then X is unital.

This need not, however, come as a complete shock. Simplicial sets, as opposed to semi-
simplicial sets, inherently encode some degree of unitality through the presence of degeneracy
maps. In general, the nerve of a non-unital category is a semi-simplicial set, and semi-simplicial
sets satisfying an analogue of the 1-Segal condition are often used to model non-unital or weakly
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unital higher categories. See, e.g., [27] and [17] for some discussion of the role of semi-simplicial
sets in modeling weak units.

3. The geometric perspective: polygonal decompositions

In addition to the purely algebraic intuition discussed above, there is a purely geometric
way of thinking about 2-Segal spaces in terms of triangulations of polygons. In this section,
we will first develop this perspective, and then explain how it relates to the previous, algebraic
perspective.

The basic idea is to try and define a kind of “state-sum” construction for polygons.9 More
precisely, let us start with a simplicial set X : ∆op Set and an (n+ 1)-gon Pn+1 with
vertices labeled 0, 1, . . . , n. Given any triangulation T of Pn+1 with the same vertices as Pn+1,
we can think of the labeling of the vertices of Pn+1 as orienting the edges of T, as pictured
below.

1

2

3

4

5

0

1

2

3

4

5

0

This means that we can identify each triangle of the triangulation as a 2-simplex, and each
edge of the triangulation as a 1-simplex. Put another way, we can think of the subsets of
{0, . . . , n} defining the 1- and 2-simplices of T as elements of ∆ via the canonical order on
{0, . . . , n}. As such, we obtain a diagram in the simplex category consisting of these subsets,
and can apply X to obtain a diagram in Set. In the case of the example above, these diagrams
are

9With some additional structure on the inputs, the construction we give here can be formalized into a
state-sum construction for punctured surfaces. See [7, §V] and [26, §3.3] for more details.
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{0, 2, 4}

{0, 4, 5} {0, 1, 2}

{2, 3, 4}

{0, 4} {0, 2}

{2, 4}

X2

X2 X2

X2

X1 X1

X1

d1

d2

d
2

d
1

d
0

d
1

Let us denote the indexing category of this resulting diagram IT, and the functor XT. We
can then define our proposed state-sum construction to be the limit of this diagram of sets,
i.e.

(T, X) := lim
IT

XT.

However, in general, this construction will depend explicitly on the choice of triangulation,
which runs counter to the very idea of a state sum. To rectify this, we notice that, since
our original diagram was defined in terms of ordered subsets of [n] = {0, . . . , n}, the set Xn

automatically fits into a cone over XT, the components of which are induced by the inclusions
of the subsets into [n]. Thus, there is a unique map

fT : Xn (T, X)

induced by this cone. Following [8], we will call fT the 2-Segal map corresponding to T.
We can then define precisely the condition which will make our state-sum invariant under
triangulation.

Definition 3.1. We call a simplicial set X : ∆op Set geometrically 2-Segal10 if for
any n ≥ 2 and any triangulation T of the labeled (n + 1)-gon Pn+1 with the same vertex set
as Pn+1, the 2-Segal map

fT : Xn (T, X)

is an isomorphism. Equivalently, this is the requirement that the canonical cone with tip Xn

over XT is a limit cone.

This definition is all well and good, and may even seem reasonable in isolation, but our
choice of terminology should raise an important question: what does this state-sum invariance
condition have to do with associativity?

10Warning: this terminology, unlike most of our terminology and notation, is non-standard.



14 WALKER H. STERN

One answer to this question lies in an operadic view of associativity. Schematically, suppose
that an object Y of some monoidal category C has a multiplication operation µ : Y ⊗ Y Y .
We can draw this multiplication as the planar rooted tree

µ

Associativity then says that any planar rooted binary tree with n inputs — interpreted as a
composition of n−1 copies of µ with itself — must be equal. So, for instance, the associativity
condition of (1) is expressed by the equality of planar rooted binary trees

=

Reinterpreting this in terms of a 2-Segal simplicial set X : ∆op Set , this requires that
the limits of the corresponding diagrams be equal, precisely as above.

Given a triangulation T of Pn+1 as above, there is a canonical way to extract a planar,
rooted, binary tree. To each triangle of T one assigns a vertex of the tree, and to each edge
{i, j} of T one assigns an edge ei,j of the tree. The orientations are chosen so that the edges
{i, j} and ei,j form an oriented basis. For example:

1

2

3

4

5

0

We can thus see that the limits arising from our triangulations are precisely iterated versions
of the pullbacks we used to explore our associativity conditions. As such, we should expect
that the 2-Segal conditions defining associativity would be equivalent to the geometric 2-Segal
conditions.

However, this association — from triangulations, to binary trees, to limits, can also be
generalized. By allowing T to divide Pn+1 not into triangles, but into (k+ 1)-gons, we obtain
planar rooted trees which are not necessarily binary, and thereby obtain associativity condi-
tions explicitly involving the n-fold composition operations defined by X. We will call such
a subdivision T a polygonal subdivision, and note that for any polygonal subdivision T, the
construction of IT, XT, (T, X), and fT works precisely it does for triangulations.



PERSPECTIVES ON THE 2-SEGAL CONDITIONS 15

With this in hand, the intuition we have developed connecting the algebraic and geometric
2-Segal conditions can be made precise.

Theorem 3.2 ([8, Proposition 2.3.2] ). For a simplicial set X : ∆op Set , the following
are equivalent.

(1) The simplicial set X is 2-Segal.
(2) The simplicial set X is geometrically 2-Segal.
(3) For every polygonal subdivision T of Pn+1 for n ≥ 2, the canonical map

fT : Xn (T, X)

is an isomorphism.

We will provide a proof of this theorem in the next section, as we formalize our geometric
intuition.

4. Formalizing the geometric perspective

Now that we have walked through two intuitions behind 2-Segal simplicial sets, let’s try to
formalize them. To make the geometric intuition formal, we introduce a tool from [8, §2.2]:
membrane sets.11

Definition 4.1. Let D and X be simplicial sets. We define the set of D-membranes in X is
the set

(D,X) := HomSet∆(D,X).

Applying the standard result that D is a colimit over its category of simplices, we can alter-
nately express the membrane set as

(D,X) = HomSet∆(D,X) ∼= HomSet∆(colim∆/D ∆n, X) ∼= lim
(∆/D)op

Xn.

Remark 4.2. It is the latter formula which is of use when X is a simplicial object in a category
other than sets, and which allows us to generalize the work in this section beyond simplicial
sets.

The notion of membrane sets will be most useful when D ⊂ ∆n is a subset of a standard
n-simplex. In this case, the limit expressing the membrane set can be rewritten using the
category of non-degenerate simplices of X. However, there is another important feature in
this case which is key to the 2-Segal conditions.

Definition 4.3. Let X be a simplicial set, and D ⊂ ∆n a simplicial subset. The inclusion
D ∆n induces a map

fD : Xn (D,X)

11In [8], the authors focus on the higher categorical (space-enriched) case, and thus always speak of mem-
brane spaces, rather than membrane sets.
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by the contravariant functoriality of HomSet∆(−, X). This map can alternately be viewed as
the universal map induced by the cone with tip Xn over the functor

(∆/D)op ∆op Set.X

Following [8], we will call fD the generalized Segal map associated to D ⊂ ∆n.

Examples 4.4.
(1) The motivation for the terminology generalized Segal map comes from the case where

D = Sp(∆n) ⊂ ∆n. The generalized Segal map associated to this inclusion is simply
the nth 1-Segal map

fD : Xn X{0,1} ×X{1} · · · ×X{n−1} X{n−1,n}.

(2) Let D ⊂ ∆n be a 1-dimensional simplicial set which is a tree and contains every
vertex of ∆n. We will call such a subset a spanning tree for ∆n. Notice that each
spine inclusion is, in particular, a spanning tree. If X is a simplicial set such that the
generalized Segal maps associated to spanning trees are always isomorphisms, then X
is isomorphic to the nerve of a groupoid (this statement is implicit in the discussion of
[16, §3], but I am unaware of a more direct reference).

For our purposes, the most important examples of generalized Segal maps are those arising
from triangulations and polygonal subdivisions. Let T be a polygonal subdivision of Pn+1

which has the same vertex set as Pn+1. Then each polygon of T can be uniquely identified
with a subset I ⊂ [n] via the labeling of the vertices. We then define a simplicial subset
∆T ⊂ ∆n associated to the polygonal subdivision T by the formula

∆T :=
⋃
I∈T

∆I .

That is, we define ∆T to be the full simplicial subset of ∆n on the simplices representing
polygons of the decomposition T. With this terminology in place, we can reformulate our
geometric definition of the 2-Segal conditions.

To make it clear how this connects to the dual graph pictures we drew above, let us fix
some further definitions.

Definition 4.5. Let T be a polygonal subdivision of Pn+1 with the same vertex set as Pn+1.
Write (∆/∆T)nd for the category of non-degenerate simplices of ∆T. Let IT ⊂ (∆/∆T)nd be
the full subcategory on the objects of form ∆I for I a polygon of T and the objects ∆{i,j} for
{i, j} an edge of T. We will call IT the dual graph category of T.

Lemma 4.6. The geometric realization of N(IT) is isomorphic to the dual graph of T

Proof. Left to the reader. □

Proposition 4.7. The inclusion

ι : IT (∆/∆T)nd
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induces an isomorphism
lim
IT

Xm
∼= lim

(∆/∆T)opnd

Xm

Proof. This is immediate from the fact that the induced map

colimIT ∆
m ∆T

is an isomorphism. □

We are now in a position to prove Theorem 3.2.

Proof (of Theorem 3.2). Since every triangulation is a polygonal subdivision, (3) =⇒ (2). To
see that (3) =⇒ (1), let n ≥ 3, and 0 ≤ i < j ≤ n, and consider the square

Xn X{i,...,j}

X{0,...,i,j,...,n} X{i,j}

This is pullback if and only if the induced map

Xn X{i,...,j} ×X{i,j} X{0,...,i,j,...,n}

is an isomorphism. However, this is simply the generalized Segal map corresponding to the
polygonal subdivision which divides Pn+1 into two polygons along the edge from i to j.

To see that (2) =⇒ (3), choose a polygonal subdivision T of Pn+1, and a refinement to a
triangulation S. For each polygon ∆J of T, there is a corresponding generalized Segal map gJ
for the restriction S∩J of triangulation S to J . The generalized Segal map fS can be identified
with the composite

Xn lim
IT

XJ lim
IT

lim
IS∩J

XL
fT {gJ}

However, since (2) holds, the gJ ’s and fS are isomorphisms. Thus, by 2-out-of-3, fT is an
isomorphism.

A similar 2-out-of-3 argument, building arbitrary subdivisions out of subdivisions into two
polygons, shows that (1) =⇒ (3), completing the proof. □

4.1. Digression: the 4-truncation. It is well known that every 1-Segal simplicial set X is
completely determined by the underlying 2-dimensional data of X, and thus is 2-coskeletal.
Rather less well-known is that, if a 2-coskeletal simplical set X satisfies the 1-Segal conditions
for 2-dimensional and 3-dimensional spines, then it is 1-Segal (see [22, Lemma 5.2] for a closely-
related proof). In this section, we will establish analogues of these results for 2-Segal simplicial
sets.

The geometric discussion above could be taken to suggest that 2-Segal simplicial sets are
determined by their 2-dimensional data — i.e., their 2-truncations. However, as we will see, this
is not quite the case. The reason for this, loosely speaking, is that the choice of isomorphism
between the membrane sets associated to the two triangulations of the square is a fundamental



18 WALKER H. STERN

part of the 2-Segal data. Since this isomorphism is determined by the set X3 of 3-simplices
and the concomitant maps to X2, we might adjust our expectations to predict that 2-Segal
simplicial sets are determined by their 3-truncations. This is, in fact, the case.

Proposition 4.8. Every 2-Segal simplicial set X is 3-coskeletal.

Proof. This is [1, Corollary 1.7] □

Perhaps surprisingly, it is not true that every 3-coskeletal simplicial set for which the 2-Segal
maps

X2 ×X1 X2 X3 X2 ×X1 X2

are isomorphisms is 2-Segal. The reason for this is easier to interpret from the algebraic
perspective. These 3-dimensional 2-Segal conditions encode the existence of associators: iso-
morphisms encoding the associativity of the 2-fold composition/multiplication. However, true
higher-categorical associativity requires that these associators satisfy coherence conditions,
which it will turn out are encoded in X4. As such, the proper converse to Proposition 4.8 is

Proposition 4.9. Let X be a 3-coskeletal simplicial set. If X satisfies the 2-Segal conditions
coresponding to subdivisions of the square and pentagon, then X is 2-Segal.

Proof. Let n > 4, and let T be a triangulation of Pn+1. We must show that any map ∆T → X
extends uniquely to a map ∆n → X. Since T is a triangulation, ∆T → ∆n factors through the
3-skeleton of ∆n, yielding

∆T sk3(∆
n) ∆n.

Since X is 3-coskeletal, it will suffice to show that we can uniquely extend to a map ∆T → X
to sk3(∆

n). To see this, we define a poset U whose elements are the simplicial subsets ∆R

where R is one of the following types of subdivision.
• A triangulation R.
• A subdivision R consisting of triangles and a single square.
• A subdivision R consisting of triangles and two squares.
• A subdivision R consisting of triangles and a single pentagon.

By [11, Theorem 6.32], the realization of this poset is the 2-skeleton of nth associahedron.
Since the associahedra are contractible, by cellular approximation, we see that the realization
of U is simply-connected.

Since X satisfies the 2-Segal conditions corresponding to subdivisions of the square and
pentagon, the functor

M : Uop Set

∆R (R, X)

sends every morphism to an equivalence. Thus, since U is simply connected, the limit of this
diagram (or, equivalently, the set of maps colim∆R∈U ∆R → X) is isomorphic to (T, X) for
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each fixed triangulation T. We thus obtain a commutative diagram

(colim∆T∈U ∆T, X)

(∆T, X) (sk3(∆
n), X) (∆n, X)∼=

∼=

Where the dashed arrow has not yet been constructed.
To prove the proposition, it will thus suffice to show that the 3-skeleton of colim∆T∈U ∆T is

isomorphic to sk3(∆
n), thereby producing the dashed arrow and showing it is an isomorphism.

Since every 3-simplex of ∆n is represented by a square in at least one triangulation of Pn+1, it
is clear that the map colim∆T∈U ∆T → ∆n defined by universal property surjects onto the 3-
skeleton. However, any two subdivisions containing the same square are related by a sequence
of moves which fix that square and act on the rest of the triangulation by replacing a pair of
triangles forming a square by the other pair of triangles which could form that square (see,
for instance, the main theorem of [18]). This sequence of moves corresponds to a zig-zag in
U consisting of subdivisions containing that same square. Thus, any two 3-simplices which
correspond to the same 3-simplex in ∆n are identified in the colimit, completing the proof. □

This result and its proof, may seem very technical, and it certainly relies on a great many
combinatorial facts and constructions — associahedra and cellular approximation, for example
— which we do not have the space to fully explore here. However, this is to be expected. As we
will see when we formalize the algebraic perspective, Proposition 4.9 can be seen as a simplicial
set analogue of MacLane’s celebrated Coherence Theorem for monoidal categories
[21, Theorem 5.2], and as such we should expect its proof to be similarly challenging.

The proof of [1, Proposition 1.6] can be adapted to show that a 4-coskeletal simplicial set
that satisfies the 2-Segal conditions necessary for Proposition 4.9 to hold is, in fact, 3-coskeletal.
This allows us to rephrase Proposition 4.9 into a statement about 4-coskeletal simplicial sets,
in which one condition involves only statements we can verify on the the 4-truncation.

Proposition 4.10. Let X be a 4-coskeletal simplicial set. The following are equivalent.
(1) X is 2-Segal.
(2) X satisfies the 2-Segal conditions corresponding to subdivisions of the square and pen-

tagon.

Proposition 4.10 will be of use in formalizing the algebraic perspective, since it allows us to
identify the category of 2-Segal simplicial sets with the category of 4-truncated simplicial sets
satisfying condition (2) of the proposition.

5. Formalizing the algebraic perspective

Now that we have a rigorous geometric perspective on the 2-Segal conditions, we can re-
turn to the algebraic implications. We will formalize our previous discussion of the 2-Segal
conditions in terms of algebraic structures in span bicategories, as in [3, 4, 12, 25, 26].

It is worth pointing out that the formalization presented here will differ from what one
might expect from the intuitive discussion above. Using the discussion in section 2 as a
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guide, one would be led to define a notion of categories (weakly) enriched in spans, a precise
formalization of our notion of categories whose composition and unit morphisms are spans.
This is the perspective taken in [8, §3.3], where such categories are called µ-categories.

To simplify our formalization, and avoid presenting the somewhat esoteric definition of µ-
categories and their concomitant functors, we will need modify our intuitions slightly. If, for
a moment, we stop thinking of the elements of X0 as objects, we can reinterpret the spans
defining our n-fold compositions as spans

X1 × · · · ×X1 Xn X1

in which the left-hand leg simply happens to take values in X1 ×X0 · · · ×X0 X1. That is, we
can think of the span as defining a span from X×n

1 to X1. Similarly, we can think of the
degeneracy map s0 : X0 → X1 as defining a span

∗ X0 X1

from the singleton ∗ to X1.
From this perspective, our discussion in section 2 yields the following structure associated

to a 2-Segal simplicial set X:
• A set X1 equipped with n-fold multiplication spans from X×n

1 to X1.
• A unit span from ∗ to X0.
• Associativity and unitality data for the multiplication and unit spans.

Conveniently, these data seem to specify a (coherently) associative algebra in the category of
spans. We will make this observation precise in the remainder of this section. The reader
preferring the multivalued category perspective is encouraged to supplement the treatment
here with [8, §3.3].

As our formalization will rely on the bicategory of spans of sets, we take a moment to define
this bicategory before continuing.

Definition 5.1. Let X and Y be sets. A span from X to Y is a diagram

X F Y
f1 f2

in Set. The category of spans from X to Y is the slice category Set/X×Y , interpreted as
the category whose objects are spans from X to Y , and whose morphisms are commutative
diagrams

F

X Y

G

f1 f2

g1 g2

For X, Y , and Z sets, the composition functor of spans

◦ : Set/Y×Z × Set/X×Y Set/X×Z
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is given on objects by sending

F G

X Y Z

f1 f2 g1 g2

to the pullback span

F f2×g1
Y G

X Y.

f1◦π1 g2◦π2

On morphisms, the composition functor is uniquely determined up to unique natural isomor-
phism by universal property.

Definition 5.2. We define the bicategory of spans of sets Span(Set) — which we will typically
denote simply by Span — to consist of the following data.

(1) The objects of Span are sets.
(2) The hom-categories Span(X,Y ) are the categories Set/X×Y of spans of sets.
(3) The composition is the composition functor

◦ : Set/Y×Z × Set/X×Y Set/X×Z

(4) The identity on X is the span

X X Xid id

(5) The associators and unitors are the unique natural transformations defined by universal
property.

It is a straightforward, if tedious, process, to verify that these data form a bicategory.
A proof, in a more general setting, can be found in [2]. The bicategory Span is, in fact,
a symmetric monoidal bicategory under the Cartesian product of sets, a fact which is also
verified in [2].

5.1. Algebras in spans. The aim of this section is to provide a proof that 2-Segal simplicial
sets correspond to coherently associative algebras in Span. To this end, we first define such
coherently associative algebras and their isomorphisms, following [6].12

Definition 5.3. An (associative) algebra in Span consists of the following data:
(1) A set A1.

12In op. cit., Day and Street use the term pseudomonoids for what we here call algebras. The reason for the
terminology change is two-fold: on the one hand to better accord with the ∞-categorical terminology used in
[25, 12], and on the other to reserve the term monoid for associative algebras in Cartesian monoidal structures.
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(2) A multiplication span

A1 ×A1 A2 A1
(µ2,µ0) µ1

which we will sometimes briefly denote as µ.
(3) A unit span

∗ A0 A1
ν0

which we will sometimes briefly denote as ν.
(4) An isomorphism α in the category Span(A1 × A1 × A1, A1) from µ ◦ (µ × idA1) to

µ ◦ (idA1 ×µ), where we are identifying (A1 × A1) × A1 with A1 × (A1 × A1) via the
unique isomorphism determined by universal property of products.

(5) Isomorphisms in the category Span(A1, A1)

λ : µ ◦ (ν × idA1) idA1

∼

and
ρ : µ ◦ (idA1 ×ν) idA1 .

∼

Here we are identifying A1 × ∗ ∼= A1
∼= ∗ ×A1, again by universal property.

These data must additionally satisfy the following coherence conditions.
(1) The pentagon diagram (Figure 1) commutes.
(2) The triangle diagram (Figure 2) commutes.

Remark 5.4. Notice that the isomorphisms α, λ, and ρ are equivalently isomorphisms of sets

α : A2
µ2×µ1

A1
A2 A2

µ0×µ1

A1
A2

λ : A2
µ2×ν0

A1
A1 A1

ρ : A2
µ0×ν0

A1
A1 A1

∼=

∼=

∼=

which commute with the appropriate projections to A1.

Definition 5.5. For two associative algebras A and B in Span, a oplax morphism13 from A
to B consists of maps of sets f : Ai → Bi, for 0 ≤ i ≤ 2 which commute with the defining
maps of the spans µ and ν, as well as with the morphisms α, λ, and ρ in Remark 5.4. We will
denote the 1-category of algebras in spans simply by Alg.

Construction 5.6. Let X be a 2-Segal simplicial set. Define an algebra A(X) in Span to
have underlying set X1, multiplication span

X1 ×X1 X2 X1,
(d2,d0) d1

13As shown in [12], pseudonatural transformations between such algebras whose components are spans
correspond to spans of morphisms of simplicial sets satisfying very specific properties. The morphisms defined
here correspond to oplax transformations whose components are morphisms of sets, hence the terminology we
have chosen.
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A2
µ2×

A1

µ1A2
µ2×

A1

µ1A2

A2
µ2×

A1

µ1A2
µ0×

A1

µ1A2

A2
µ0×

A1

µ1A2
µ2×

A1

µ1A2A2
µ0×

A1

µ1A2
µ0×

A1

µ1A2

A2
µ1×

A1

µ0A2
µ2×

A1

µ1A2

idA2
×α

s ◦ (idA2
×α)

(α ◦ t) × idA2
idA2

×α

α × idA2

Figure 1. The associativity pentagon for algebras in Span, where permuta-
tions have been inserted to ease the writing of pullbacks. Here t denotes the
unique non-identity permutation, and s denotes the permutation (2, 1, 3). Each
corner of the pentagon corresponds to a composite of three copies of µ, and
thus corresponds to a binary tree and a triangulation of the pentagon P5.

A2
µ2×

A1

µ1A2
µ0×

A1

ν0A0 A2
µ0×

A1

µ1A2
µ2×

A1

ν0A0

A2

α × idA0

idA2
×λ idA2

×ρ

Figure 2. The triangle diagram for an algebra in Span. Here, we are implicitly
identifying A2 ×A1 A1

∼= A2 at the bottom of the diagram

unit span

∗ X0 X1
s0

associator given by the (invertible) span

X2 ×X1 X2 X3 X2 ×X1 X2
(d0,d2) (d3,d1)
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consisting of the 2-Segal maps, and unitors λ and ρ given by the inverses of the 2-Segal maps

λ−1 : X1 X2 ×X1 X0
s0

ρ−1 : X1 X2 ×X1 X0
s1

The pentagon condition follows by placing a copy of X4 in the center of the pentagon of figure
1, with the 2-Segal maps for X4 directed radially outward. This yields a commutative diagram
in which every morphism is an equivalence by the 2-Segal conditions. The triangle condition
follows similarly.

It is immediate that given a morphism f : X → Y , the components f0, f1, and f2 define an
oplax morphism A(f) : A(X) → A(Y ) in Alg. As a result we obtain a functor

Al : 2Seg Alg.

The formalization of the algebraic condition then has the following form:

Theorem 5.7. The functor
Al : 2Seg Alg.

is an equivalence of categories.

Before we prove this theorem it is worth noting that [15, Example 3.6] is a special case
which is particularly approachable. A partially-defined map of sets can be viewed as a span
whose left leg is injective, and so every partial monoid can be viewed as an algebra in Span.

5.2. Essential surjectivity. The construction of the inverse to A is a rather subtle business.
In principal, it amounts to proving a kind of coherence result. However, we will make use of
Proposition 4.9 to substantially simplify the matter, implicitly shifting the issue of coherence
into that result. In particular, we need only construct a 4-truncated, 3-coskeletal simplicial set
from an algebra. Even with this simplification, length constraints mean that we only sketch
the construction which demonstrates essential surjectivity.

Let A ∈ Alg be an algebra in Span, and define a 4-truncated simplicial set XA as follows.
The sets of 0-, 1-, and 2-simplices are A0, A1, and A2, respectively. We define A3 to be the
limit of the diagram

α : A2
µ2×µ1

A1
A2 A2

µ0×µ1

A1
A2

∼=

of sets. Since the associator is an isomorphism, this is canonically isomorphic to both pullbacks.
The set A4 is defined to be the limit of the associativity pentagon. The face and degeneracy
maps are defined as follows.
Face maps:

• The face maps A1 → A0 are given by d1 = p ◦ λ−1 and d0 = q ◦ ρ−1, where p and q
are the projections from the pullback to A0.

• The face maps A2 → A1 are the maps of the multiplication span, i.e., di = µi.
• The face maps A3 → A2 are the composites of the defining maps of the limit A3 →
A2

µ2×µ1

A1
A2 and A3 → A2

µ2×µ1

A1
A2 with the projections to the four copies of A2.
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• The face maps A4 → A3 are the composites of the defining maps of the limit from A4

to the corners of the pentagon (1) with the projections of the pullbacks to copies of
A2

µ2×µ1

A1
A2 and A2

µ0×µ1

A1
A2. These latter are canonically identified with A3.

Degeneracy maps:
• The degeneracy s0 : A0 → A1 is identified with ν0.
• The degeneracy maps s0 and s1 from A1 to A2 are identified with the composites of
λ−1 and ρ−1, respectively, with the projections to A2.

• The definition of A3 and A4 yield isomorphisms

An
ϕi×ν0

A1
A0 An−1

∼=

for n = 3, 4 and 0 ≤ i < n, where ϕi is dual to the inclusion of {i, i + 1} into [n].
The isomorphisms are obtained by decomposing An into a pullback of A2’s and then
applying λ or ρ. The triangle diagram (2) implies that these are, in fact, unique. We
can thus define the degeneracy map si to be the composite

An−1 An
ϕi×ν0

A1
A0 An

∼= pr1

of the inverse isomorphisms with the projection.
It is time-consuming and notationally heavy to verify that these definitions yield a 4-truncated
simplicial set, and we omit such verifications for the sake of brevity.

By construction, this 4-truncated simplicial set satisfies the 2-Segal conditions arising from
triangulations of the square and pentagon. Thus, by Proposition 4.10, it uniquely determines
a 2-Segal set. By construction, Al(AX) ∼= A, and so the functor Al is essentially surjective.

5.3. Fully faithfulness. Again, we leverage coskeletalness to provide a short proof that the
functor Al is fully faithful. In this case, since every 2-Segal simplicial set is 3-coskeletal by
Proposition 4.8, we may consider our morphisms of 2-Segal simplicial sets to be morphisms
between 3-truncations. This immediately implies that Al is faithful. To see that it is full,
we need only note that, given an oplax morphism (f0, f1, f2) : A → B of algebras, the fact
that the fi commute with α, λ and ρ allow us to uniquely extend them to a morphism of
3-truncated simplicial sets, completing the proof.

The one subtlety in the above argument is that, by the lowest-dimensional 2-Segal con-
ditions, f2 and f1 uniquely determine maps A3 → B3. However, there are two maps so
determined, one corresponding to each subdivision of the square. Remembering f3 amounts
to remembering that these maps commute with the associativity isomorphism.

5.4. Coherence, truncation, and coskeletalness. We now arrive at a cluster of ideas which
bear profound and interesting interrelations. Though we have defined associative algebras in
Span by means of finite data satisfying relations, the most natural way of defining associative
algebras in a bicategory is via infinite coherent data. More precisely, one can think of an algebra
in a monoidal bicategory (B,⊗, I) as consisting of an object A, together with morphisms

µn : A⊗n A
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for n ≥ 0, together with 2-isomorphisms

αm,n : µm ◦ µn µm+n−1

and
η : µ1 idA

which are coherent in the sense that any two parallel 2-morphisms built from these data using
tensor product and compositions are equal.14

The fact that algebras in the sense of our Definition 5.3 are equivalent to this kind of coherent
data is a highly non-trivial theorem — a generalization of MacLane’s famed coherence
theorem for monoidal categories.

Intuitively, however, algebras in Span presented by the infinite data above correspond very
naturally to simplicial sets. The roof An of the span µn from A×n

1 to A1 is the set of n-
simplices, and the associativity conditions amount precisely to the 2-Segal conditions. As
such, one can think of Proposition 4.10 as a kind of coherence theorem for algebras in Span
— the 4-truncated data which correspond to algebras in the sense of Definition 5.3 can be
uniquely extended to the infinite data of an algebra in the sense introduced in this section.

Our proof of Proposition 4.9 is very topological, and the essentially topological character
of coherence theorems has long been recognized. In ∞-category theory, one can rephrase
MacLane’s coherence theorem to state that the space of n-ary multiplications on a monoidal
category is contractible, i.e., is a trivial groupoid when equiped with (products and composites
of) the associativity and unitality natural isomorphisms. For a treatment of coherence making
more explicit use of topological methods see, e.g., [5].
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